
i

Geofairy iOS/Android App and Server

 Software Architecture Document
Version 0.8

07/08/2022

Document Number: 20220708

Contract Number: +1 703 993 6124

ii

Table of Contents

Software Architecture Document.. i

Table of Contents .. ii

1. Introduction ... 1
2. Design ... 2

2.1 Geospatial Web Service Module... 2
2.2 Communication Module .. 3
2.3 Mobile Gateway Endpoint Module .. 4
2.4 Citizen Science Module .. 6

3. Implementation ... 9
3.1 Interrelationship between Subsystems ... 9
3.2 GeoFairy App ... 10
3.3 GeoFairy Ground Truth Server ... 12

4. Troubleshooting & Support ... 20
4.1 Error Messages .. 20
4.2 Special Considerations ... 20
4.3 Support ... 20

1

1. Introduction
Geofairy is an award-winning App trying to realize one-stop location based service (LBS) for
users to retrieve geospatial information (GI) via their mobile devices. It has 8 source datasets
and more than 100 data layers covering the whole globe, including most developing countries.
The information types include weather, vegetation, elevation, soil moisture, land cover,
atmosphere, and precipitation. For developing countries these information are very helpful but
lack or hard to retrieve due to rare open earth observation projects and inappropriate data use.
Geofairy could provide everyone in developing country with free geospatial information to help
them make decisions about agriculture, biodiversity, climate, disaster, ecosystems, health and
weather. This User Manual (UM) provides the information necessary for mobile users to
effectively use the Geofairy system on the smart phones.

2

2. Design
An overview of the GeoFairy system design is shown Figure 1. It is a composition of multiple
sub-module components and the connections among them, which are introduced in detail below.

Figure 1. System Architecture (blue boxes - software components; green boxes - data)

2.1 Geospatial Web Service Module
This module refers to the Info Server block in Figure 1 and contains all information services that
are used to process data requests from GeoFairy system and send back actual information. To
realize the application-level data aggregation, the architecture reuses the existing geospatial web
services to fill in this module. There are thousands of web services offering tens of thousands of
terabytes of geospatial data that are still growing. However, selecting underlying web services
for mobile Apps need extra attention to quality. The web services need to meet several criteria to
become qualified as an information source.

3

2.1.1 High Sustainability

GeoFairy system architecture heavily rely on backend web services. The used web services
should have stable long-term availability. The services are better maintained if attended by a
specialized person. In that case, only the web services that are backed by well-reputed businesses
or reliable government agencies are appropriate to be relied on. Otherwise, the solution code
should be prepared for an unexpected situation, such as service offline, interface altering, data
gaps, internal errors if those prototype web services from research projects are involved. It is
questionable whether the service would persist after the funding is over. Therefore, a modular
design is highly recommended to avoid software collapse when exceptions occur during the
operation period.

2.1.2 High Throughput & Low Latency

A single server has limited capability in serving user requests. A reliable web service needs solid
gateway routers and robust hardware to deal with a large number of concurrent requests. The
network interface card (NIC) should have a very high throughput and spare NICs are preferable.
If the requests are at an overwhelming level, a load balancer would be recommended and the
requests on a single node should not exceed a threshold to provide a low latent response.
Memory leaking is a common issue that might cause the entire system to collapse. High memory
volume is important to ensure service stability. The volume of Earth observations, especially
remote sensing imagery datasets, is tremendous, and processing them need a lot more
computational power than normal datasets. Powerful hardware and robust software are the
prerequisite to enable low latency and high throughput. These details need to be thoroughly
investigated before adopting them.

2.1.3 Interoperable Interface

To address the data heterogeneity challenges, the interface of the candidate web services should
be easily interoperable. There should be explicit manuals on calling the services (e.g., Swagger).
Standard interfaces such as OGC WMS (Web Map Service), WFS (Web Feature Service), WCS
(Web Coverage Service) are preferred. RESTful web services with detailed documentation are
also recommended. OpenAPI Specification v3 was released as a milestone for the API developer
community, to adopt as a common standard service interface. More standard web services are
forthcoming and could be easily integrated via these standards.

2.2 Communication Module
This module refers to all arrows and their associated interfaces in Figure 1. All displayed
information in GeoFairy system is real-time collected from the Internet. It has no built-in data
upon the installation. A valid Internet connection is required. For remote sites where the signals
might be weak, solutions like offline data storage are discussed. The current design is based on
the assumption that there are at least occasional Internet connections to the smartphones.

The communication between client and server follows the standard protocols: HTTP (Hypertext
Transfer Protocol). Other lower-level network protocols such as TCP (Transmission Control
Protocol) or UDP (User Datagram Protocol) can also be directly used. Today most smartphones
are equipped with hardware to support multiple protocols like Wi-Fi (IEEE 802.11), 4G LTE
(IMT-2000), and Bluetooth, to transmit data wirelessly. To communicate with the higher-level

4

standard service interfaces, such as REST API, OGC web services, the client and server need to
use the same set of protocols for communication between them. This requires a detailed
specification of parameters, structures, encodings, algorithms, etc. For geospatial information,
further specifications and standards on projections, resolution, timestamp, data format, and
metadata are mandatory for the other-side program to correctly decode the information.

Fortunately, OGC, ISO, W3C, OpenAPI, and many other standardization organizations already
considered these issues and made a whole set of interoperability standards accordingly. Those
web service standards fill in the vacuum of regulating geospatial information communication
from the bottom to the top. The interoperability standards cover almost every aspect of the
workflow to transmit geospatial information among individual remote devices. The conventional
OGC web services offer two types of protocols—plain XML and SOAP (Simple Object Access
Protocol). Recent development shows that RESTful web services have become popular, and
JSON is now a routine format for information exchange. The popularity of RESTful web
services is largely pinned on its simplicity and generality and is limited to several unified
conclusive verbs: GET, POST, PUT, PATCH, and DELETE, which cover almost all transaction
requirements. In this architecture, the communication between client and server is in multiple
formats and should remain flexible, according to real-world situations.

2.3 Mobile Gateway Endpoint Module
The internal design of the app includes four major data-centric submodules (the Data Client
block in Figure 1). Each submodule deals with one specific kind of requirement.

2.3.1 Data Retrieval Queue Submodule

This architecture allows the client to talk to multiple web services simultaneously. The data
retrieval graph becomes complicated accordingly because of the network uncertainty,
hardware/software capacity, and variety of transferred data volume. Generally speaking, the data
retrieval speed is determined by the status of the loads on the client and the server, and the
network, which could be simply represented using the following equation:

𝑇 = 𝑎 ×
𝐿 × 𝐿௦ × 𝑂ௗ
𝐶 × 𝐶௦ × 𝑄

+ 𝑒

where 𝑇𝑟 is the time cost of retrieving data from server to client; 𝐿𝑐 and 𝐿𝑠 are the workload on
client and server; 𝑂𝑑 is the complexity of the transmitted data, which is a combined score
measuring the volume, dimension, structure, format, encoding, etc.; 𝑄𝑛 denotes the quality of the
network between the client and the server; 𝐶𝑐 and 𝐶𝑠 are the system capacity of the client and the
server and could be measured by the maximum data the system can process every second. The
coefficient 𝑎 is a constant number transforming the ratio to a time unit, and 𝑒 is the uncertain
error.

According to the equation, when the two endpoints and networks in between are settled, the time
cost is mostly decided by the real-time workload and data complexity. To reduce the latency of
the system, the average requests on each server node should be balanced and remain under
certain thresholds, the transmitted geospatial information should be simple and low dimensional.
However, in the proposed architecture, even though the requests are simple, the client would
struggle to handle the parallel requests to various web services. To achieve a smooth use of the
client, a queuing system should be placed to avoid long-time freezing. The first step is to send all

5

requests out via asynchronous channels. A queued receiver will start to listen to the response. As
more traffic is conducted on the HTTP protocol, the requests would use the AJAX technique.
However, WebSocket and other mutual communication protocols would be better for those tasks.
For every response received, the queue would assign a receiver to redirect the information to the
corresponding data processor (discussed in Section 2.3.3). The receiver queue is loosely coupled
with the interface module and would not crash or delay the user interface when some service
requests are jammed or failed.

Another important design principle of this module is to reduce the complexity of the transmitted
data. A high degree of complexity is one of the significant features distinguishing EO datasets
from the others. The organization and storage of EO datasets on the server side could add a big-
time cost to the query and computing performances. To avoid the intensive processing burden
relocating to the client-side, the data to be transmitted need to be in very fine grain. The data tree
structure should be no more than three levels and the information should be divided into the
finest grain pieces. Information should be fragmented and the dimension should be lowered. For
example, some satellite image products have hundreds of bands and the coordinate system is
three or more dimensional (time and height). The best scale of the transmitted data in one
transaction is one band value at one location (three values—latitude, longitude, band value). It
would not only relieve the burden on the network and shorten the waiting time for the users, but
would also improve the system robustness by simplifying the data processing workflow on the
client-side.

2.3.2 Data Extraction & Fusion Submodule

The heterogeneity of multisource data makes it difficult to directly use the received data,
especially when there are more than two sources for the same data category. For example, the
Land Cover category has NASA NLCD (National Land Cover Database), NASA MODIS Land
Cover products, USDA (United States Department of Agriculture), CDL (Cropland Data Layer),
GLC (Global Land Cover), FROM-GLC, etc. The NLCD, CDL, and FROM-GLC are in GeoTiff
format, and the MODIS Land Cover products are in HDF (Hierarchical Data Format). A large
portion of the costs in reusing existing services is charged by this step. The common processes to
unify the datasets include reprojection, resampling, re-gridding, reformatting, mosaic, merging,
getting location reports, etc. Most web services do all the preprocessing work. GeoFairy only
needs to retrieve the data via standard interfaces like WMS GetFeatureInfo without worrying
about the data processing method. After retrieving the location-based information, GeoFairy
needs to do data harmonization, by integrating multi-source data into a co-registered dataset,
with the same or compatible spatial resolution and projection. As it is a point-based data
processing, the amount of information to be processed by GeoFairy2 is tiny and can be rapidly
accomplished by mobile devices.

2.3.3 Data Store Listener Submodule

The results from the extraction module is pushed into the data store module. The data store is a
dedicated block in the smartphone’s memory. Each information category has a separate data
store. The data store and the user interface are synchronized. Any change in the data store is
instantly reflected in the interface. For example, the data store has new weather forecasting
information, the interface refresh is triggered instantly, and the new information is directly
displayed. A listener is responsible for constantly monitoring the data stores and triggering the

6

rendering of the corresponding interface region. The listener maintains a set of preinstalled
rendering functions for various categories of information. Besides the data from the retrieval
module, the data store also saves the data about user preference, e.g., users usually turn off some
data categories that they are not interested in to keep the interface concise. Unlike the other in-
memory data stores that are cleaned after the app is closed, the client data store would persist in a
file database on the smartphone’s external memory. Data persistence is also the responsibility of
the data store listener.

2.3.4 Panel Context Management Submodule

As a general-purpose app, it covers multi-thematic information, and the interface design should
contain multiple tab panels to keep the information organized. Each tab panel is thematic and
domain-specific. All panels must be about the same location and this module is built to ensure
that. Panel context is important to allow each tab panel to manage their data, while keeping
consistent on the target location. Every time users switch to other locations (via clicking on the
map or entering city names), the tab panels can always quickly turn around and refresh their
information to reflect the situation of the last selected location. The context management also
serves as a coordinator to link the datasets via their properties. Sometimes the observations and
data products do not agree with each other. Context management is responsible to detect the
inconsistency and warn about it or discard the believed corrupted information based on quality
control results.

2.3.5 Visualization

The visualization of location-linked data is implemented in three major forms—map, charts, and
tables (as shown in the Visualization block in Figure 1). The details are introduced in. In this
new design, the improvements are mostly done on adjusting the composite and transitioning
among the three forms. Notebook-style rendering has become popular, along with the wide
adoption of Jupyter Notebook, within both science and industry. Users only need to swipe on the
smartphone screen with all information just under their fingertips. The tables, maps, and charts
are aligned and fit into a one-column document. Reading geospatial information should feel no
different from reading a newspaper.

2.4 Citizen Science Module
One of the major goals of GeoFaiy Version 2 is to engage the public to interact with geospatial
information, rather than just receiving the information. It means the data consumers could also
become data providers. There are many citizen science Apps out there, and most of them follow
a similar design. The sensors on the client devices are connected with the software via system
driver libraries and platform interfaces. For example, both Android and iOS have API for a high-
resolution digital camera, global positioning system (GPS) sensor, accelerometer, gyroscope,
magnetometer, ambient light sensor, and microphone. The data collection function is developed
and equipped within the client software or web pages (Figure 2). When users browse around the
client, they find it smooth to transit from the role of users to providers. One or multiple
customized data servers are set up to receive the data collected by citizen scientists. In this
architecture, a similar design is added on top of the previous modules. The client prepares a few
submission forms and embed navigating buttons into the data forms. In the submission forms,
users could enter their observations associated with photos, location, and other sensed data. Two

7

server-side programs are deployed to receive the data submitted from the clients (the
Crowdsourcing Data Server in Figure 1). One program is a data server responsible for storing
and querying the data. People can select their interested citizen science project and the form is
dynamically changed for people to contribute observations.

Figure 2. Citizen Science Module Design

Another component is a validation service (the top left blue box in Figure 1) that is responsible
for validating the EO products by comparing them with the collected ground truth observations
or VGI. If the two disagree, a marker is labeled and the disagreement is recorded for further
investigation. If more than three separate individual clients feedback the same disagreements, the
validation server places a change request to the EO data server for improvements. The VGI is
attached as the new ground truth. If less than three separated feedbacks or the disagreement
feedbacks are inconsistent, the request is withheld until enough consistent observations are
retrieved. Every client is able to browse its submitted VGI and might also have access to the VGI
submitted by other people. All stored VGI is processed to remove personal information about the
submitter on behalf of user security. The collected VGI is open and freely accessible via the
crowd data server and could benefit tens of thousands of researchers in many disciplines.

The system is composed of client and server module. Server side is maintained by Center for
Spatial Information Science and Systems (CSISS) in George Mason University. Users only need
download the client App onto their devices. Geofairy server resides in GeoBrain cloud which is a
private cloud hosted also in CSISS. Geofairy client is a uniform mobile-style interface, which
provide three modes allowing users to view the information from various perspectives. To run
Geofairy App, a smart phone with no less than 1GB memory, 1GHz CPU and 1GB memory is
required.

8

The born of Geofairy is inspired by our daily difficulties in gathering and retrieving all kinds of
spatial information in practice. Each App is designed to provide some specific information in a
relatively static way, e.g., Google Maps for maps and satellite images, AccuWeather for current
weather and weather forecast, Climate FieldView for agricultural field related information and
ArcGIS for spatial data viewing and analyzing. The Apps have different transfer channels and
separated outlets. Users have to download and install an App to acquire the contained
information at one time. Besides, extra operations are often needed such as signing up,
subscribing services, learning user guide and formalizing recognizable requests. It is complicated
and very inconvenient for most users. A simplified App one-stop serving all kinds of GI has been
widely recognized as a public desire, especially in emergent scenarios like response actions to
disasters like earthquakes, flooding, wildfires, and hurricanes. However, there are very few
progresses towards this direction yet. The main challenge comes from the high heterogeneity and
poor interoperability of the involved data and service interface.

9

3. Implementation
The GeoFairy system consists of two types of main components, GeoFairy App and GeoFairy
Ground Truth Server. The relationship between GeoFairy App, GeoFairy Server, and Data
Sources is shown in Figure 3.

Figure 3. Relationship between GeoFairy App, Ground Truth Servers, and Data sources

3.1 Interrelationship between Subsystems
A GeoFairy App can select one of listed GeoFairy Servers and then submit ground truth data to
the server. GeoFairy App can show information such as weather, air quality, ground status,
which provided from various data sources by using web service connection.

3.1.1 Acquisition of Authority

During the initializing process of GeoFairy App, the App acquires an access authority from the
selected GeoFairy Server with an account. If user didn’t fill in any account information, the App
will use a default account. The authority needs to communicate between GeoFairy App and
Ground Truth Server. The authentication and access control are implemented based on Spring
Security.

10

3.1.2 Web Service Sources

GeoFairy App would directly query third-party web services without going through the GMU
server to avoid potential bottlenecks on performance, relieve the burden on the proxy server,
accelerate the information loading, and eventually address the data heterogeneity challenges.
Table 1 lists most of the datasets displayed in GeoFairy App. As shown in Table 1, the GMU
server only provides crop-related information via WMS. Other web services are backed by
renowned federal research institutes or commercial companies. In addition to WMS, GeoFairy
App also uses REST APIs. The retrieved information is filtered and fused on GeoFairy App by
pre-defined rules to only display information with high quality, resolution, accuracy, and value.
Both the GMU server and GeoFairy App are operationally maintained, and new versions are
released regularly, with additional functionality and bug fixings.

Table 1. Data list and web service sources using in GeoFairy

Dataset Name Web Service Provider Interoperability Protocol

Satellite Imagery Layer Google & Apple Google Tile/Apple Tile API

Street Map Layer Google & Apple Google Tile/Apple Tile API

Weather & Forecasting NOAA & OpenWeather NWS API/Weather API

Cropland Data Layer GMU WMS

Crop Calendar Layer GMU WMS

Twitter Feeds Twitter Twitter API

Vegetation Status GMU & NASA WMS

Air Quality World Air Quality Index WAQI API

Geocoding Google Google API

Elevation USGS WMS

Atmosphere NASA WMS

Global Land Cover 2000 JRC-IES WMS

Agricultural Hardiness USDA GIS REST API

3.2 GeoFairy App
GeoFairy App is developed and built based on Expo. Expo is a system that allows people to build
mobile Apps for iOS and Android using just one JavaScript codebase. Expo is based on React
Native by Meta Platforms Inc. A top-level software architecture of a GeoFairy App is shown in
Figure 4.

11

Figure 4. Software Architecture of GeoFairy App

3.2.1 Screen Views

The software architecture of the GeoFairy App is based on React Native. The App view is
initialized by React Navigation container which is built by Expo, Software Mansion, and
Callstack. The container has 5 inner navigators named HomeScreen, InventoryScreen (for
Utilities), GroundScreen, AirScreen, and SettingsScreen, which are responsible for each 5 main
functions of the App.

3.2.2 User Credentials

After loading SettingsScreen navigator component, the component is starting to initialize the
App configurations. One of important step is acquiring user credential from a GeoFairy Ground
Truth Server with the last stored sign-in status. If the last sign-in status was no sign-in status
ether signed-out or never sign-in, the App will initialize with sign-in with a default user. The user
credential is required to communicate with a GeoFairy Ground Truth Server.

3.2.3 Utilities

The InventoryScreen (for Utilities) is designed as an inner-App container, and currently installed
3 inner-apps, named GroundTruthComponent for Ground Truth inner-App, IdsComponent for
Irrigation inner-App, and TweetsComponent for Tweets inner-App. Each inner-App icon is

12

wrapped by React Native’s TouchableOpacity wrapper. Touch handling of each wrapper
switches its inner-App visibility.

Ground Truth inner-App supports submitting ground truth data to a Ground Truth server. User
can select one project from listed projects which are allowed to the sign-in user, Input fields in a
project are defined by an administrator when the project was created or modified.

3.2.4 Data Sources

Inner communication between a GeoFairy App and all data sources is using Ajax by browser
engine. A GeoFairy App source codes is written by JavaScript, and they are transferred as a
native binary App working on Android or iOS. The JavaScript codes are running on browser
engine which is invoked by WebView framework by Android or iOS. Because of security reason,
browsers restrict cross-origin HTTP requests, but WebView can allow to fetch cross-origin
resources by changing its options. That’s why GeoFairy can fetch data from various data sources
via Ajax connection without the help of any proxy, even though the App codes are written by
JavaScript. All data sources are described in Table 1 above.

3.3 GeoFairy Ground Truth Server
GeoFairy Ground Truth Server is a Spring Boot Application using Spring Web and Spring Data
JPA database connectivity. The Spring Web is used to implement Web APIs for communicating
with GeoFairy App or Project Management Portal, rather than implements as a Spring MVC
framework. Software architecture of the GeoFairy Ground Truth Server is shown in Error!
Reference source not found..

13

Figure 5. Software Architecture of GeoFairy Ground Truth Server

3.3.1 Web APIs

Spring Web package used on the server is used to implement Web APIs. Each Web APIs is
implemented as a Spring Controllers. The controllers consist of 5 controllers for responding
portal accesses and 2 controllers for responding mobile App accesses.

14

3.3.1.1 ManagementProjectController

ManageProjectController is for responding to manage project requests from GeoFairy Project
Management Portal. The Web APIs mapped by this controller is shown in Table 2.

Table 2. Web APIs in ManagementProjectController

Web API Method Response

/management/projects GET Projects

/management/projects POST New project ID

/management/projects/{projectId} GET A project

/management/projects/{projectId} PUT Project ID (OK)

/management/projects/{projectId} DELETE Deleted project ID

/management/projects/{projectId}/adminEmails GET Admin email

/management/projects/{projectId}/clone GET New project ID

/management/projects/{projectId}/images GET Image DB records

/management/projects/{projectId}/join GET Project ID (sent join requesting)

/management/projects/{projectId}/samples_agg GET Agg results set

/management/projects/{projectId}/users PUT Project ID (user added)

/management/projects/{projectId}/userEmails GET User email

3.3.1.2 ManagementSampleController

ManageSampleController is for responding to manage ground truth sample requests from
GeoFairy Project Management Portal. The Web APIs mapped by this controller is shown in
Table 3.

Table 3. Web APIs in ManagementSampleController

Web API Method Response

/management/groundtruth GET Ground truth samples

/management/groundtruth_zip GET A zip file (packed Image files)

/management/groundtruth/{project_id}/csv GET A CSV file (ground truth samples)

/management/groundtruth/{project_id}/pdf GET A PDF file (ground truth samples)

/management/images/{filename} GET Image binary

/management/sample/{id} DELETE Delete Status

/management/sample/{id} GET A ground truth sample

/management/sample/{id} PATCH Update Status

15

Web API Method Response

/management/sample/{id}/nearby_image GET Image file information list

/management/sample/{id}/sample_edit_images GET Image file information list

3.3.1.3 UserController

UserController is for responding to manage user account information from GeoFairy Project
Management Portal. The Web APIs mapped by this controller is shown in Table 4.

Table 4. Web APIs in UserController

Web API Method Response

/loginContext GET Signed-in user information

/register POST Created user ID

/users (with ID and/or Email) GET A found user information

/users (no parameter) GET All user’s information

/users POST Created user ID (same as /register)

/users/{email} DELETE Delete user status

/users/{id} PUT Replace user status

/users/{id} PATCH Update status (Active and Role)

/users/{id}/password POST Status (user’s password matching)

/users/message GET All messages of signed-in user

/users/projects/approve POST Status (added user to join a project)

/users/projects/reject POST Status (rejected user of joining request)

3.3.1.4 ForgotPasswordController

ForgetPasswrdController is for responding to manage user’s password on GeoFairy Management
Portal. The Web APIs mapped by this controller is shown in Table 5.

Table 5. Web APIs in ForgetPasswordController

Web API Method Response

/forgotten_password/{email} GET Status (sending reset email)

/reset_password POST Status (changing password)

16

3.3.1.5 WebController

WebController is for responding to redirect from given URL paths on GeoFairy Management
Portal. The Web APIs mapped by this controller is shown in Table 6.

Table 6. Web APIs in WebController

Web API Method Response

/portal GET Forward to “/portal/index.html”

/error GET Forward to “/portal/index.html”

/portal/reset_password GET Forward to “/portal/index.html”

3.3.1.6 MobileProjectController

MobileProjectController is for responding to manage requests projects information from
GeoFairy App. The Web APIs mapped by this controller is shown in Table 7.

Table 7. Web APIs in MobileProjectController

Web API Method Response

/projects GET All public projects information

/projects/{projectId} GET A project information

/projects/{projectId} DELETE Delete status

/projects_auth GET All accessible projects of signed-in user

3.3.1.7 MobileSampleController

MobileSampleController is for responding to manage requests about samples of project from
GeoFairy App. The Web APIs mapped by this controller is shown in Table 8.

Table 8. Web APIs in MobileSampleController

Web API Method Response

/groundtruth GET All ground truth samples by project ID

/groundtruth POST Saved a ground truth sample ID

/groundtruth_sec/{token} POST Saved a ground truth sample ID

/images POST Submit image Status

/images/{filename} GET Image binary

17

3.3.1.8 Security Configuration

Most of all Web APIs requires user credentials. It is defined by a HTTP security setting of
Spring Web infrastructure, and there is no user defined controller for this action. The sign-in is
done by requesting the following Web API described in Table 9.

Table 9. Web API for Security Configuration

Web API Method Response

/login All Authentication result

3.3.2 Database Connectivity

Data manipulation of the server is implemented by using Spring Data JPA, which makes it easy
to easily implement Java Persistence API (JPA) based repository. All database queries, including
create tables, are managed by Spring Data JPA layer. The GeoFairy server is just using Spring
JPA Repository APIs and does not access the tables directly by QUERY strings. All used
database schemas in the GeoFairy server are shown as an ER diagram in Figure 6.

There are two main tables in the schemas: project and user. The project table keeps all projects
information both public type and private types. The user table keeps all users account
information. An ownership mapping between project and user is described in table
project_admin. Each record has two columns, project ID and user ID which are a primary key of
the two tables. Similarly, a joining relationship between project and user is described in table
project_user.

Ground truth samples information submitted by GeoFairy App are keeping in the table
ground_truth_sample. Each record in the table can have an image path which is the location of
stored image file. Stored image is kept in a directory in the server storage by the server
configuration (geofairy.data.path=…). The default location is “/Data”. The table user_messages
is for keeping user’s messages such as request a join to a project by each user.

18

Figure 6. ER Diagram for GeoFairy Ground Trust Server

.

3.3.3 GeoFairy Project Management Portal

The GeoFairy server has an its own portal for managing projects and registered users. The portal
is implemented an independent React web pages, instead of using Thymeleaf templates. The
portal communicates with its server by Web APIs during runtime, not by using dynamically
generated web pages. All the Web APIs is listed in section 3.3.1.6 and 3.3.1.7. An overview of
the software architecture of the GeoFairy Project Management Portal is shown in Figure 7.

19

Figure 7. Software Architecture of GeoFairy Project Management Portal

There are three main pages are in the portal: HomePage, ProjectPage, and UserPage. The
HomePage is a starting point page. The ProjectPage is for project management, including
project creating, updating, deleting. The page also supports requesting to join private projects.
The UserPage is for managing user accounts such as changing role, active status, and account
deletion.

The portal is written as a React web pages, and the portal codes are web-packed by React tools.
The packed codes are put into the server’s static resource folder, named “portal”. After that,
GeoFairy server will be packaging as a Spring Boot application.

20

4. Troubleshooting & Support

4.1 Error Messages
If GeoFairy App complains about location error, make sure you have enabled location services
of your phone.

If GeoFairy App shows blank, double check your Internet connection.

Still got error messages, please contact us.

4.2 Special Considerations
Users with disabilities may contact us to tell your difficulties in using GeoFairy App.

4.3 Support
Table 10 – Support Points of Contact

Contact Organization Phone Email Role Responsibility

Liping
Di

CSISS,
GMU

+1 703
993 6114

ldi@gmu.edu Director

Ziheng
Sun

CSISS,
GMU

+1 703
993 6124

zsun@gmu.edu Development
Leader

21

Appendix A: Record of Revision

Table 11 – Record of Changes
Version Number Date Author/Owner Description of Change

0.8 07/08/2022 Gil Heo (CSISS)

Ziheng Sun (CSISS)

Liping Di (CSISS)

Initiated version

