Center for Spatial Information Science and Systems (CSISS)
CSISS Geospatial Web Services index

Raster_UnsupervisedClassificationService

This service serves to reclassify multispectral satellite data using unsupervised classification method based on the maximum-likelihood classifier (MLC) algorithm.

Operation:

unsupervised - Unsupervised reclassification is the automated assignment of raster pixels to different spectral classes. The assignment is based only on the image statistics. The algorithm is called the maximum-likelihood classifier (MLC).

The unsupervised reclassification starts with collecting the image channels of interest (i.e. for optical data usually all reflective channels without thermal channel) into an image group. It is important to set the initial number of classes used for the first iteration ("number of initial classes"); for other parameters, you may use default values for the first try.[Markus Neteler and Helena Mitasova, 2004].

Request Parameters:

sourceURLArray
URL Array of a group of imagery files to be classified
Default format: GeoTIFF
classes
Initial number of classes
Parameter format: integer
Options: 1-255
iterations
Maximum number of iterations
Parameter format: integer
Default: 30
convergence
Percent convergence
Parameter format: float
Options: 0-100
Default: 98.0
separation
Cluster separation
Parameter format: float
Default: 0.0
outputGeoTiffType
Type of output GeoTIFF file. The output Format Type is specified as GeoTIFF
Parameter format: string
Options: Byte,Int16,UInt16,UInt32,Int32,Float32,Float64,CInt16,CInt32,CFloat32,CFloat64

Response Parameters:

returnURL
URL of output raster map to hold classification results
returnFormat
Format of output raster map
Default: GeoTIFF
reportURL
URL of an output file to contain final report
Default: text
reportFormat
Format of output file to contain final report
Default: TEXT

For further informations

ServiceLocation
WSDL
JavaInterface

See also GRASS commands

i.cluster
i.maxlik


Copyright Center for Spatial Information Science and Systems (CSISS), 2002-2010
George Mason University (GMU), 4400 University Drive, MSN 6E1, Fairfax, VA 22030, USA


Any comments to:webmaster